1) How many moles are in 40.0 grams of water?
2) How many grams are in 3.7 moles of $\mathrm{Na}_{2} \mathrm{O}$?
3) How many atoms are in 14 moles of cadmium?
4) How many moles are in 4.3×10^{22} molecules of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
5) How many molecules are in 48.0 grams of NaOH ?
6) How many grams are in 4.63×10^{24} molecules of CCl_{4} ?

Solutions

1) How many moles are in 40.0 grams of water?

$40.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times 1$ mole $\mathrm{H}_{2} \mathrm{O}=2.22$ mole $\mathrm{H}_{2} \mathrm{O}$
 $18.01 \mathrm{~g} \mathrm{H}_{\mathbf{2}} \mathrm{O}$

2) How many grams are in 3.7 moles of $\mathrm{Na}_{2} \mathrm{O}$?

3.7 moles $\mathrm{Na}_{2} \mathrm{O} \times \underset{1}{\mathbf{6} \mathrm{~g} \mathrm{Na}_{2} \underline{\mathrm{O}}=230 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}}$ 1 mole $\mathrm{Na}_{2} \mathrm{O}$

3) How many atoms are in 14 moles of cadmium?

14 mole Cd $\times 6.022 \times 10^{23}$ atoms $\mathrm{Cd}=8.4 \times 10^{23}$ atoms $\mathbf{C d}$ 1 mole Cd
4) How many moles are in 4.3×10^{22} molecules of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
4.3×10^{22} molecules $\mathrm{H}_{3} \mathrm{PO}_{4} \times \frac{1 \mathrm{~mole} \mathrm{H}_{3} \mathrm{PO}_{4}}{6.022 \times 10^{23}{\text { molecules } \mathrm{H}_{3} \mathrm{PO}_{4}}=7.1 \times 10^{-2} \text { moles } \mathrm{H}_{3} \mathrm{PO}_{4}, ~(1)}$
5) How many molecules are in 48.0 grams of NaOH ?
48.0 molecules $\mathrm{NaOH} \times \frac{1 \text { mole NaOH }}{40 \mathrm{~g} \mathrm{NaOH}} \times \frac{6.022 \times 10^{23} \text { molecules } \mathrm{NaOH}}{1 \mathrm{~mole} \mathrm{NaOH}}$
$=7.23 \times 10^{23}$ molecules NaOH
6) How many grams are in 4.63×10^{24} molecules of CCl_{4} ?
4.63×10^{24} molecules $\mathrm{CCl}_{4} \times \frac{1 \text { mole CCl }_{4}}{6.022 \times \text { 10 }^{23} \text { molecules CCl }_{4}} \times \frac{153.8 \mathrm{~g} \mathrm{CCl}_{4}}{1 \mathrm{~mole} \mathrm{Cl}_{4}}=1180 \mathrm{~g} \mathrm{CCl}_{4}$

